Este puente es famoso por su derrumbe en el año '40 por la simple acción del viento. En el video se ve como empieza a retorcerse y al cabo de una hora colapsa. Es algo nunca visto - la explicación del fenómeno es que el viento estaba soplando a una velocidad que hacía oscilar al puente a la frecuencia natural, haciendo que la amplitud de cada oscilación sumara a la siguiente hasta hacer caer el puente. La única víctima fue un perro que quedó dentro de un automovil abandonado sobre el puente.
Causa del colapso
El puente estaba sólidamente construido, con vigas de acero al carbono ancladas en grandes bloques de hormigón. Los diseños precedentes tenían un entramado característico de vigas y perfiles metálicos por debajo de la calzada. Este puente fue el primero en su tipo en utilizar plate girders (pares de grandes I vigas) para sostener la calzada. En los diseños previos el viento podía atravesar la estructura, pero en el nuevo diseño el viento sería redirigido por arriba y por debajo de la estructura. Al poco tiempo de haber concluido la construcción a finales de junio (fue abierto al tráfico el 1 de julio de 1940), se descubrió que el puente se deformaba y ondulaba en forma peligrosa aún en condiciones de viento relativamente benignas para la zona.
Esta resonancia era de tipo longitudinal, por lo que el puente se deformaba en dirección longitudinal, con la calzada elevándose y descendiendo alternativamente en ciertas zonas. La mitad de la luz principal se elevaba mientras que la otra porción descendía. Los conductores veían a los vehículos que se aproximaban desde la otra dirección desaparecer y aparecer en hondonadas, que a su vez oscilaban en el tiempo. Debido a este comportamiento es que un humorista local le dio el sobrenombre de "Galloping Gertie". Sin embargo, se consideraba que la estructura del puente era suficiente como para asegurar que la integridad estructural del puente no estaba amenazada.
La falla del puente ocurrió a causa de un modo de torsión nunca antes observado, con vientos de apenas 65 km/hora. Este modo es conocido como de torsión, y es distinto del modo longitudinal, (véase también torque), en el modo de torsión cuando el lado derecho de la carretera se deforma hacia abajo, el lado izquierdo se eleva, y viceversa, con el eje central de la carretera permaneciendo quieto. En realidad fue el segundo modo de torsión, en el cual el punto central del puente permaneció quieto mientras que las dos mitades de la carretera hacia una y otra columna de soporte se retorcían a lo largo del eje central en sentidos opuestos. Un profesor de física demostró este punto al caminar por el medio del eje de la carretera, que no era afectado por el ondular de la carretera que subía y bajada a cada lado del eje. Esta vibración fue inducida por flutter aero elástico. El flutter se origina cuando una perturbación de torsión aumenta el ángulo de ataque del puente (o sea el ángulo entre el viento y el puente). La estructura responde aumentando la deformación. El ángulo de ataque se incrementa hasta el punto en que se produce la pérdida de sustentación, y el puente comienza a deformarse en la dirección opuesta. En el caso del puente de Tacoma Narrows, este modo estaba amortiguado en forma negativa (o lo que es lo mismo tenía realimentación positiva), lo cual significa que la amplitud de la oscilación aumentaba con cada ciclo porque la energía aportada por el viento excedía la que se disipaba en la flexión de la estructura. Eventualmente, la amplitud del movimiento aumenta hasta que se excede la resistencia de una parte vital, en este caso los cables de suspensión. Una vez que varios de los cables fallaron, el peso de la cubierta se transfirió a los cables adyacentes, que no soportaron el peso, y se rompieron en sucesión hasta que casi toda la cubierta central del puente cayó al agua.
La espectacular destrucción del puente es a menudo utilizada como elemento de reflexión y aprendizaje en cuanto a la necesidad de considerar los efectos de aerodinámica y resonancia en la concepción de estructuras e ingeniería civil. Sin embargo el efecto que causó la destrucción del puente no debe ser confundido con resonancia forzada (como por ejemplo el movimiento periódico inducido por un grupo de soldados que desfilan a través del puente). En el caso del puente de Tacoma Narrows, no existía una perturbación periódica. El viento soplaba en forma constante a 67 km/h. La frecuencia del modo destructivo fue 0,2 Hz, que no se corresponde ni con un modo natural de la estructura aislada ni con la frecuencia de un blunt-body vortex shedding del puente a la velocidad del viento. El evento solo puede ser comprendido si se consideran acoplados los sistemas estructurales y aerodinámicos lo cual requiere un riguroso análisis matemático para descubrir todos los grados de libertad de esta estructura en particular y el conjunto de cargas impuestas sobre ella.
3 comentarios:
Da miedo ver como se mueve la carretera del puente. No me imagino pasando por hay en ese momento. XD ¡Que miedo!.
es increible como los arquitectos e ingenieros tienen nuetras vidas en sus manos. Deberian tener mas cuidado
Querida Sophie:
Esta situaciòn no es menor que la que vivimos diariamente cuando nos subimos al autobus (manejado por un chofer), a un aviòn (por un piloto) o vamos al médico. El fenómeno del colapso del Tacoma Narrows marcó por su naturaleza un hito que permitió desarrollar la ingeniería, al permitir interpretar el génesis de su falla.
Publicar un comentario